在合作多智能体增强学习(Marl)中的代理商的创造和破坏是一个批判性的研究领域。当前的Marl算法通常认为,在整个实验中,组内的代理数量仍然是固定的。但是,在许多实际问题中,代理人可以在队友之前终止。这次早期终止问题呈现出挑战:终止的代理人必须从本集团的成功或失败中学习,这是超出其自身存在的成败。我们指代薪资奖励的传播价值作为遣返代理商作为追索的奖励作为追索权。当前的MARL方法通过将这些药剂放在吸收状态下,直到整组试剂达到终止条件,通过将这些药剂置于终止状态来处理该问题。虽然吸收状态使现有的算法和API能够在没有修改的情况下处理终止的代理,但存在实际培训效率和资源使用问题。在这项工作中,我们首先表明样本复杂性随着系统监督学习任务中的吸收状态的数量而增加,同时对变量尺寸输入更加强大。然后,我们为现有的最先进的MARL算法提出了一种新颖的架构,它使用注意而不是具有吸收状态的完全连接的层。最后,我们展示了这一新颖架构在剧集中创建或销毁的任务中的标准架构显着优于标准架构以及标准的多代理协调任务。
translated by 谷歌翻译
We propose Hierarchical ProtoPNet: an interpretable network that explains its reasoning process by considering the hierarchical relationship between classes. Different from previous methods that explain their reasoning process by dissecting the input image and finding the prototypical parts responsible for the classification, we propose to explain the reasoning process for video action classification by dissecting the input video frames on multiple levels of the class hierarchy. The explanations leverage the hierarchy to deal with uncertainty, akin to human reasoning: When we observe water and human activity, but no definitive action it can be recognized as the water sports parent class. Only after observing a person swimming can we definitively refine it to the swimming action. Experiments on ActivityNet and UCF-101 show performance improvements while providing multi-level explanations.
translated by 谷歌翻译
Sparse principal component analysis (SPCA) has been widely used for dimensionality reduction and feature extraction in high-dimensional data analysis. Despite there are many methodological and theoretical developments in the past two decades, the theoretical guarantees of the popular SPCA algorithm proposed by Zou, Hastie & Tibshirani (2006) based on the elastic net are still unknown. We aim to close this important theoretical gap in this paper. We first revisit the SPCA algorithm of Zou et al. (2006) and present our implementation. Also, we study a computationally more efficient variant of the SPCA algorithm in Zou et al. (2006) that can be considered as the limiting case of SPCA. We provide the guarantees of convergence to a stationary point for both algorithms. We prove that, under a sparse spiked covariance model, both algorithms can recover the principal subspace consistently under mild regularity conditions. We show that their estimation error bounds match the best available bounds of existing works or the minimax rates up to some logarithmic factors. Moreover, we demonstrate the numerical performance of both algorithms in simulation studies.
translated by 谷歌翻译
Long-term non-prehensile planar manipulation is a challenging task for robot planning and feedback control. It is characterized by underactuation, hybrid control, and contact uncertainty. One main difficulty is to determine contact points and directions, which involves joint logic and geometrical reasoning in the modes of the dynamics model. To tackle this issue, we propose a demonstration-guided hierarchical optimization framework to achieve offline task and motion planning (TAMP). Our work extends the formulation of the dynamics model of the pusher-slider system to include separation mode with face switching cases, and solves a warm-started TAMP problem by exploiting human demonstrations. We show that our approach can cope well with the local minima problems currently present in the state-of-the-art solvers and determine a valid solution to the task. We validate our results in simulation and demonstrate its applicability on a pusher-slider system with real Franka Emika robot in the presence of external disturbances.
translated by 谷歌翻译
Human modeling and relighting are two fundamental problems in computer vision and graphics, where high-quality datasets can largely facilitate related research. However, most existing human datasets only provide multi-view human images captured under the same illumination. Although valuable for modeling tasks, they are not readily used in relighting problems. To promote research in both fields, in this paper, we present UltraStage, a new 3D human dataset that contains more than 2K high-quality human assets captured under both multi-view and multi-illumination settings. Specifically, for each example, we provide 32 surrounding views illuminated with one white light and two gradient illuminations. In addition to regular multi-view images, gradient illuminations help recover detailed surface normal and spatially-varying material maps, enabling various relighting applications. Inspired by recent advances in neural representation, we further interpret each example into a neural human asset which allows novel view synthesis under arbitrary lighting conditions. We show our neural human assets can achieve extremely high capture performance and are capable of representing fine details such as facial wrinkles and cloth folds. We also validate UltraStage in single image relighting tasks, training neural networks with virtual relighted data from neural assets and demonstrating realistic rendering improvements over prior arts. UltraStage will be publicly available to the community to stimulate significant future developments in various human modeling and rendering tasks.
translated by 谷歌翻译
Ongoing risks from climate change have impacted the livelihood of global nomadic communities, and are likely to lead to increased migratory movements in coming years. As a result, mobility considerations are becoming increasingly important in energy systems planning, particularly to achieve energy access in developing countries. Advanced Plug and Play control strategies have been recently developed with such a decentralized framework in mind, more easily allowing for the interconnection of nomadic communities, both to each other and to the main grid. In light of the above, the design and planning strategy of a mobile multi-energy supply system for a nomadic community is investigated in this work. Motivated by the scale and dimensionality of the associated uncertainties, impacting all major design and decision variables over the 30-year planning horizon, Deep Reinforcement Learning (DRL) is implemented for the design and planning problem tackled. DRL based solutions are benchmarked against several rigid baseline design options to compare expected performance under uncertainty. The results on a case study for ger communities in Mongolia suggest that mobile nomadic energy systems can be both technically and economically feasible, particularly when considering flexibility, although the degree of spatial dispersion among households is an important limiting factor. Key economic, sustainability and resilience indicators such as Cost, Equivalent Emissions and Total Unmet Load are measured, suggesting potential improvements compared to available baselines of up to 25%, 67% and 76%, respectively. Finally, the decomposition of values of flexibility and plug and play operation is presented using a variation of real options theory, with important implications for both nomadic communities and policymakers focused on enabling their energy access.
translated by 谷歌翻译
Background and Purpose: Colorectal cancer is a common fatal malignancy, the fourth most common cancer in men, and the third most common cancer in women worldwide. Timely detection of cancer in its early stages is essential for treating the disease. Currently, there is a lack of datasets for histopathological image segmentation of rectal cancer, which often hampers the assessment accuracy when computer technology is used to aid in diagnosis. Methods: This present study provided a new publicly available Enteroscope Biopsy Histopathological Hematoxylin and Eosin Image Dataset for Image Segmentation Tasks (EBHI-Seg). To demonstrate the validity and extensiveness of EBHI-Seg, the experimental results for EBHI-Seg are evaluated using classical machine learning methods and deep learning methods. Results: The experimental results showed that deep learning methods had a better image segmentation performance when utilizing EBHI-Seg. The maximum accuracy of the Dice evaluation metric for the classical machine learning method is 0.948, while the Dice evaluation metric for the deep learning method is 0.965. Conclusion: This publicly available dataset contained 5,170 images of six types of tumor differentiation stages and the corresponding ground truth images. The dataset can provide researchers with new segmentation algorithms for medical diagnosis of colorectal cancer, which can be used in the clinical setting to help doctors and patients.
translated by 谷歌翻译
Anomaly Detection (AD), as a critical problem, has been widely discussed. In this paper, we specialize in one specific problem, Visual Defect Detection (VDD), in many industrial applications. And in practice, defect image samples are very rare and difficult to collect. Thus, we focus on the unsupervised visual defect detection and localization tasks and propose a novel framework based on the recent score-based generative models, which synthesize the real image by iterative denoising through stochastic differential equations (SDEs). Our work is inspired by the fact that with noise injected into the original image, the defects may be changed into normal cases in the denoising process (i.e., reconstruction). First, based on the assumption that the anomalous data lie in the low probability density region of the normal data distribution, we explain a common phenomenon that occurs when reconstruction-based approaches are applied to VDD: normal pixels also change during the reconstruction process. Second, due to the differences in normal pixels between the reconstructed and original images, a time-dependent gradient value (i.e., score) of normal data distribution is utilized as a metric, rather than reconstruction loss, to gauge the defects. Third, a novel $T$ scales approach is developed to dramatically reduce the required number of iterations, accelerating the inference process. These practices allow our model to generalize VDD in an unsupervised manner while maintaining reasonably good performance. We evaluate our method on several datasets to demonstrate its effectiveness.
translated by 谷歌翻译
Label noise is a significant obstacle in deep learning model training. It can have a considerable impact on the performance of image classification models, particularly deep neural networks, which are especially susceptible because they have a strong propensity to memorise noisy labels. In this paper, we have examined the fundamental concept underlying related label noise approaches. A transition matrix estimator has been created, and its effectiveness against the actual transition matrix has been demonstrated. In addition, we examined the label noise robustness of two convolutional neural network classifiers with LeNet and AlexNet designs. The two FashionMINIST datasets have revealed the robustness of both models. We are not efficiently able to demonstrate the influence of the transition matrix noise correction on robustness enhancements due to our inability to correctly tune the complex convolutional neural network model due to time and computing resource constraints. There is a need for additional effort to fine-tune the neural network model and explore the precision of the estimated transition model in future research.
translated by 谷歌翻译
Non-negative matrix factorisation (NMF) has been widely used to address the problem of corrupted data in images. The standard NMF algorithm minimises the Euclidean distance between the data matrix and the factorised approximation. Although this method has demonstrated good results, because it employs the squared error of each data point, the standard NMF algorithm is sensitive to outliers. In this paper, we theoretically analyse the robustness of the standard NMF, HCNMF and L2,1-NMF algorithms, and implement sets of experiments to show the robustness on real datasets, namely ORL and Extended YaleB. Our work demonstrates that different amounts of iterations are required for each algorithm to converge. Given the high computational complexity of these algorithms, our final models such as HCNMF and L2,1-NMF model do not successfully converge within the iteration parameters of this paper. Nevertheless, the experimental results still demonstrate the robustness of the aforementioned algorithms to some extent.
translated by 谷歌翻译